Главная / Статистические расчеты / Анализ взаимосвязей / Коэффициент корреляции Спирмена

Коэффициент корреляции Спирмена

Коэффициент корреляции Спирмена – статистический критерий, который наиболее часто используется при обработке эмпирических данных в курсовых, дипломных и магистерских работах по психологии. Этот критерий относится к типу непараметрических и не требует, чтобы данные были распределены по нормальному закону. Достаточно, если психологические показатели представлены в порядковой шкале, то есть учитывается только тот факт, что один показатель больше или меньше, чем другой.

 

Расчет коэффициента корреляции Спирмена

При проведении эмпирического исследования в дипломной по психологии для расчета коэффициента корреляции Спирмена удобнее пользоваться статистическими программами. Однако, этот критерий нетрудно рассчитать и вручную.

Пример расчета коэффициента корреляции Спирмена

Предположим, в рамках дипломной работы по психологии проводится исследование влияния климата в коллективе на состояние сотрудников. Одна из задач исследования состоит в выявлении взаимосвязи между климатом и эмоциональным истощением сотрудников.

Выдвигаем гипотезу - существует отрицательная взаимосвязь между социально-психологическим климатом в коллективе и степенью истощения сотрудников.

В таблице приводятся данные, отражающие этапы расчета коэффициентов ранговой корреляции Спирмена. Суть расчета сводится к тому, что от собственно значений переходим к их рангам (ранг отражает положение показателя в общем списке и записывается в виде натурального числа). Далее находятся разности между рангами, эти разности возводятся в квадрат и суммируются.

Эмоциональное истощение (Х)

Психологический климат (Y)

Ранг Х

Ранг Y

Ранг Х-Ранг Y

(Ранг Х-Ранг Y)2

1

15

0,7

6

8

-2

4

2

15

0,6

6

5,5

0,5

0,25

3

15

0,6

6

5,5

0,5

0,25

4

13

0,5

1

3

-2

4

5

15

0,7

6

8

-2

4

6

14

0,5

2

3

-1

1

7

15

0,7

6

8

-2

4

8

15

0,5

6

3

3

9

9

16

1

10

10

0

0

10

15

0

6

1

5

25

Сумма

0

51,5

Формула расчёта коэффициента корреляции Спирмена

                  Сумма(D2)

R= 1 - 6----------------

                 N(N2-1)

D – разность между рангами

Сложность расчёта корреляций Спирмена вручную связана с необходимостью вводить поправки на одинаковые ранги, что достаточно трудоемко.

Поправка для Х:

Тх=(73-7)/12=336/12=28

Поправка для Y:

Тy=(2(33-3)+(23-2))/12=(48+6)/12=4,5

 

                  Сумма(D2)+Тх+ Тy                   51,5+28+4,5

Rэмп= 1 - 6---------------------= 1 – 6---------------------------=

                         N(N2-1)                            10(10*10 – 1)

                84                    504

=1- 6 ------------ =1 - ----------=1 – 0,50909= 0,4909

               990                 990

В специальной таблице находим значение критического значения коэффициента ранговой корреляции для выборки из 10 человек и для уровня значимости 0,05:

Rкр (10)=0,64

Rэмп˂ Rкр (0,49˂0,64)

Следовательно, не существует связи между социально-психологическим климатом в коллективе и степенью истощения сотрудников. Для интерпретации данного результаты (а интерпретировать результаты статистических расчётов в дипломах по психологии очень важно) можно сказать следующее. Возможно, в коллективе сотрудников, где проводилось исследование, существуют социально-психологические или организационные факторы, которые опосредуют влияние климата в коллективе на эмоциональное истощение сотрудников. В связи с этим прямая взаимосвязь между этими показателями нивелируется.

 

Анализ результатов расчета коэффициентов ранговой корреляции Спирмена

Если коэффициент ранговой корреляции Спирмена вычисляется с помощью статистической программы, то она сама выделяет статистически значимые корреляции при заданном уровне статистической значимости (0,05 или 0,01).

Если расчёт коэффициента ранговой корреляции Спирмена проводится вручную, то после получения эмпирического значения его нужно сравнить с критическим. Критические значения коэффициентов ранговой корреляции Спирмена приводятся в специальных таблицах для разного объема выборки и уровня статистической значимости.

Далее нужно сравнить эмпирический и критический коэффициенты:

  • если значение эмпирического коэффициента ранговой корреляции больше или равно критическому, то делается вывод о существовании статистически значимой корреляционной связи между показателями;
  • если значение эмпирического коэффициента ранговой корреляции меньше (как в приведенном выше примере) критического, следовательно, статистически значимой корреляционной связи между показателями нет.

Несмотря на различные алгоритмы расчета корреляций Пирсона и Спирмена логика их анализа и интерпретации одинакова.

 

Различия коэффициентов корреляций Пирсона и Спирмена

На защите дипломных работ по психологии студента могут спросить о причинах, по которым он выбрал тот или иной тип коэффициента корреляции. То есть, важно понимать, чем принципиально различаются коэффициенты корреляции Пирсона и Спирмена.

Не вдаваясь в математические тонкости, можно сказать следующее:

  1. Для корреляций Пирсона данные должны быть распределены нормально, или выборка должна быть достаточно большой. Для корреляций Спирмена данные могут быть любыми.
  2. Корреляции Пирсона дают более точный результат о взаимосвязях показателей, чем корреляции Спирмена. В то же время коэффициент Пирсона более чувствителен к случайным выбросам показателей. Например, у всех испытуемых показатели тревожности находятся в диапазоне от 5 до 15, а у одного – 25 баллов. Испытуемый мог отвечать наобум, что привело к такому показателю и при расчёте по Пирсону это существенно исказит результат. В то же время на расчет коэффициента Спирмена такого рода выбросы не оказывают заметного влияния.

Таким образом, в курсовых, дипломных и магистерских работах по психологии для анализа взаимосвязей между показателями лучше использовать коэффициенты ранговой корреляции Спирмена.


Надеюсь, эта статья поможет вам написать работу по психологии самостоятельно. Если понадобится помощь, обращайтесь (все виды работ по психологии; статистические расчеты). Заказать